skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh, Manjot"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BACKGROUND: Genomic surveillance allows identification of circulating SARS-CoV-2 variants. We provide an update on the evolution of SARS-CoV-2 in Rhode Island (RI). METHODS: All publicly available SARS-CoV-2 RI sequences were retrieved from https://www.gisaid.org. Genomic analyses were conducted to identify variants of concern (VOC), variants being monitored (VBM), or non-VOC/non-VBM, and investigate their evolution. RESULTS: Overall, 17,340 SARS-CoV-2 RI sequences were available between 2/2020–5/2022 across five (globally recognized) major waves, including 1,462 (8%) sequences from 36 non VOC/non-VBM until 5/2021; 10,565 (61%) sequences from 8 VBM between 5/2021–12/2021, most commonly Delta; and 5,313 (31%) sequences from the VOC Omicron from 12/2021 onwards. Genomic analyses demonstrated 71 Delta and 44 Omicron sub-lineages, with occurrence of variant-defining mutations in other variants. CONCLUSION: Statewide SARS-CoV-2 genomic surveillance allows for continued characterization of circulating variants and monitoring of viral evolution, which inform the local health force and guide public health on mitigation efforts against COVID-19. KEYWORDS: COVID-19, SARS-CoV-2, variants, genomic sequencing, Rhode Island 
    more » « less
  2. The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys ( n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL −1 , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive ‘microfluidic biopsy’ technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs. 
    more » « less